Skip to main content
Log in

Effect and application of micro- and nanobubbles in water purification

  • Mini Review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Objective and methods

The importance of water purification has increased due to the availability of several pollutants, such as chemicals, toxic metals, gases, and biological contaminants in the water. Commercial wastewater and domestic wastewater have commonly been treated using biological approaches. However, these approaches have limitations, such as high energy costs, low efficiency, requirement of trained staff, expensive chemicals, and multistep processing. Therefore, to overcome these challenges, the development of advanced technologies is increasingly in demand. Micro- and nanobubbles with advantages such as small size, large specific surface area, long residence time in the water, high mass transfer power, high zeta interface potential, and the capacity to produce hydroxyl radicals are considerably significant.

Results and conclusions

In this study, we discuss the current applications of micro- and nanobubbles using traditional and advanced techniques, such as flotation, aeration, and ozonation, which are capable of eliminating contaminants and color, water disinfection, and the oxidation of organic pollutants. Bubble technology has emerged as a potential platform for the successful extraction of harmful contaminants from water using these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable fresh water. Science 271(5250):785–788

    Article  CAS  Google Scholar 

  2. Lee L-K, Kim J-H, Park J, Kim J (2016) Water quality at water treatment plants classified by type. Toxicol Environ Health Sci 8(5):296–301

    Article  Google Scholar 

  3. Alexandratos SD, Barak N, Bauer D, Davidson FT, Gibney BR, Hubbard SS, Taft HL, Westerhof P (2019) Sustaining water resources: environmental and economic impact. ACS Sustain Chem Eng 7(3):2879–2888

    Article  CAS  Google Scholar 

  4. Heck KN, Garcia-Segura S, Westerhoff P, Wong MS (2019) Catalytic converters for water treatment. Acc Chem Res 52(4):906–915

    Article  CAS  PubMed  Google Scholar 

  5. Boelee E, Geerling G, van der Zaan B, Blauw A, Vethaak AD (2019) Water and health: From environmental pressures to integrated responses. Acta Trop 193:217–226

    Article  PubMed  Google Scholar 

  6. Nazifa TH, Kristanti RA, Ike M, Kuroda M, Hadibarata T (2020) Occurrence and distribution of estrogenic chemicals in river waters of Malaysia. Toxicol Environ Health Sci 12(1):65–74

    Article  Google Scholar 

  7. Stenekes N, Colebatch HK, Waite TD, Ashbolt NJ (2006) Risk and governance in water recycling: public acceptance revisited. Sci Technol Hum Values 31(2):107–134

    Article  Google Scholar 

  8. Eikebrokk B, Vogt R, Liltved H (2004) NOM increase in Northern European source waters: discussion of possible causes and impacts on coagulation/contact filtration processes. Water Sci Technol Water Supply 4(4):47–54

    Article  Google Scholar 

  9. Qian J, Gao X, Pan B (2020) Nanoconfinement mediated water treatment: from fundamental to application. Environ Sci Technol 54(14):8509–8526

    Article  CAS  PubMed  Google Scholar 

  10. Rezaei H, Zarei A, Kamarehie B, Jafari A, Fakhri Y, Bidarpoor F, Karami MA, Farhang M, Ghaderpoori M, Sadeghi H (2019) Levels, distributions and health risk assessment of lead, cadmium and arsenic found in drinking groundwater of Dehgolan’s villages, Iran. Toxicol Environ Health Sci 11(1):54–62

    Article  Google Scholar 

  11. Romanos G, Athanasekou C, Likodimos V, Aloupogiannis P, Falaras P (2013) Hybrid ultrafiltration/photocatalytic membranes for efficient water treatment. Ind Eng Chem Res 52(39):13938–13947

    Article  CAS  Google Scholar 

  12. Zodrow KR, Li Q, Buono RM, Chen W, Daigger G, Dueñas-Osorio L, Elimelech M, Huang X, Jiang G, Kim J-H (2017) Advanced materials, technologies, and complex systems analyses: emerging opportunities to enhance urban water security. Environ Sci Technol 51(18):10274–10281

    Article  CAS  PubMed  Google Scholar 

  13. Atkinson AJ, Apul OG, Schneider O, Garcia-Segura S, Westerhoff P (2019) Nanobubble technologies offer opportunities to improve water treatment. Acc Chem Res 52(5):1196–1205

    Article  CAS  PubMed  Google Scholar 

  14. Xiao Z, Aftab TB, Li D (2019) Applications of micro–nano bubble technology in environmental pollution control. Micro Nano Lett 14(7):782–787

    Article  CAS  Google Scholar 

  15. Ohmori M, Haruta K, Kamimura S, Koike H, Uchida T, Takeyama H (2015) A Simple Method for Nanobubble Generation and Stability of the Bubbles. J Environ Biotechnol 15(1):41–44

    Google Scholar 

  16. Agarwal A, Ng WJ, Liu Y (2011) Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84(9):1175–1180

    Article  CAS  PubMed  Google Scholar 

  17. Khirani S, Kunwapanitchakul P, Augier F, Guigui C, Guiraud P, Hébrard G (2012) Microbubble generation through porous membrane under aqueous or organic liquid shear flow. Ind Eng Chem Res 51(4):1997–2009

    Article  CAS  Google Scholar 

  18. Temesgen T, Bui TT, Han M, Kim T-i, Park H (2017) Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review. Adv Colloid Interface Sci 246:40–51

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi M, Chiba K, Li P (2007) Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J Phys Chem B 111(6):1343–1347

    Article  CAS  PubMed  Google Scholar 

  20. Smirnov B, Babaeva NY, Naidis G, Panov V, Saveliev A, Son E, Tereshonok D (2018) The bubble method of water purification. EPL 121(4):48007

    Article  Google Scholar 

  21. Smirnov BM, Babaeva NY, Naidis G, Panov VA, Son EEe, Tereshonok DV (2019) Bubble method of water purification. High Temp 57(2):286–288

    Article  CAS  Google Scholar 

  22. Khan P, Zhu W, Huang F, Gao W, Khan NA (2020) Micro-nano bubbles technology and the water-related application. Water Supply 20(6):2021–2035

    Article  CAS  Google Scholar 

  23. Kim H-G, Yu YW, Yang Y, Park M-H (2019) Portable environmental microfluidic chips with colorimetric sensors: image recognition and visualization. Toxicol Environ Health Sci 11(4):320–326

    Article  Google Scholar 

  24. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water—a comprehensive review. Resour Technol 2(4):175–184

    Google Scholar 

  25. Karthikeyan T, Rajgopal S, Miranda LR (2005) Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J Hazard Mater 124(1–3):192–199

    Article  CAS  PubMed  Google Scholar 

  26. Vijayaraghavan K, Ahmad D, Aziz MEBA (2007) Aerobic treatment of palm oil mill effluent. J Environ Manag 82(1):24–31

    Article  CAS  Google Scholar 

  27. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

    Article  PubMed  Google Scholar 

  28. Singh B, Lee J, Kim H-G, Park M-H, Kim K (2020) Colorimetric detection of copper ions using porphyrin-conjugated silica nanoparticles. Toxicol Environ Health Sci 12(4):381–389

    Article  Google Scholar 

  29. Dwandaru WSB, Parwati LD, Wisnuwijaya RI (2019) Formation of graphene oxide from carbon rods of zinc-carbon battery wastes by audiosonic sonication assisted by commercial detergent. Nanotechnol Precision Eng 2(2):89–94

    Article  Google Scholar 

  30. Hua G, Reckhow DA, Kim J (2006) Effect of bromide and iodide ions on the formation and speciation of disinfection byproducts during chlorination. Environ Sci Technol 40(9):3050–3056

    Article  CAS  PubMed  Google Scholar 

  31. Li P, Tsuge H (2006) Water treatment by induced air flotation using microbubbles. J Chem Eng Japan 39(8):896–903

    Article  CAS  Google Scholar 

  32. Chang E, Liang C-H, Ko Y-W, Chiang P-C (2002) Effect of ozone dosage for removal of model compounds by ozone/GAC treatment. Ozone Sci Eng 24(5):357–367

    Article  CAS  Google Scholar 

  33. Li P, Tsuge H (2006) Ozone transfer in a new gas-induced contactor with microbubbles. J Chem Eng Japan 39(11):1213–1220

    Article  CAS  Google Scholar 

  34. Jung S-W, Baek K-H, Yu M-J (2004) Treatment of taste and odor material by oxidation and adsorption. Water Sci Technol 49(9):289–295

    Article  CAS  PubMed  Google Scholar 

  35. Kaushik G, Chel A (2014) Microbubble technology: emerging field for water treatment. Bubble Sci Eng Technol 5(1–2):33–38

    Article  CAS  Google Scholar 

  36. Takahashi M (2005) ζ potential of microbubbles in aqueous solutions: electrical properties of the gas–water interface. J Phys Chem B 109(46):21858–21864

    Article  CAS  PubMed  Google Scholar 

  37. Najafi AS, Drelich J, Yeung A, Xu Z, Masliyah J (2007) A novel method of measuring electrophoretic mobility of gas bubbles. J Colloid Interface Sci 308(2):344–350

    Article  CAS  PubMed  Google Scholar 

  38. Uchida T, Oshita S, Ohmori M, Tsuno T, Soejima K, Shinozaki S, Take Y, Mitsuda K (2011) Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater. Nanoscale Res Lett 6(1):295

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yoshida A, Takahashi O, Ishii Y, Sekimoto Y, Kurata Y (2008) Water purification using the adsorption characteristics of microbubbles. Jpn J Appl Phys 47(8R):6574

    Article  CAS  Google Scholar 

  40. Lee KH, Kim H, KuK JW, Chung JD, Park S, Kwon EE (2020) Micro-bubble flow simulation of dissolved air flotation process for water treatment using computational fluid dynamics technique. Environ Pollut 256:112050

    Article  CAS  PubMed  Google Scholar 

  41. Rubio J, Souza M, Smith R (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15(3):139–155

    Article  CAS  Google Scholar 

  42. Tsai J-C, Kumar M, Chen S-Y, Lin J-G (2007) Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater. Sep Purif Technol 58(1):61–67

    Article  CAS  Google Scholar 

  43. Dockko S, Han M (2004) Fundamental characteristics of bubbles and ramifications for the flotation process. Water Sci Technol 50(12):207–214

    Article  CAS  PubMed  Google Scholar 

  44. Sumikura M, Hidaka M, Murakami H, Nobutomo Y, Murakami T (2007) Ozone micro-bubble disinfection method for wastewater reuse system. Water Sci Technol 56(5):53–61

    Article  CAS  PubMed  Google Scholar 

  45. Han M, Dockko S (1998) Zeta potential measurement of bubbles in DAF process and its effect on the removal efficiency. KSCE J Civ Eng 2(4):461–466

    Article  Google Scholar 

  46. Haarhoff J, Edzwald J (2001) Modelling of floc-bubble aggregate rise rates in dissolved air flotation. Water Sci Technol 43(8):175–184

    Article  CAS  PubMed  Google Scholar 

  47. Han M, Kim M, Shin M (2006) Generation of a positively charged bubble and its possible mechanism of formation. J Water Supply Res T 55(7–8):471–478

    Article  CAS  Google Scholar 

  48. Miettinen T, Ralston J, Fornasiero D (2010) The limits of fine particle flotation. Miner Eng 23(5):420–437

    Article  CAS  Google Scholar 

  49. Ahmed N, Jameson G (1985) The effect of bubble size on the rate of flotation of fine particles. Int J Miner Process 14(3):195–215

    Article  CAS  Google Scholar 

  50. Collins G, Jameson G (1976) Experiments on the flotation of fine particles: the influence of particle size and charge. Chem Eng Sci 31(11):985–991

    Article  CAS  Google Scholar 

  51. Bui TT, Nam S-N, Han M (2015) Micro-bubble flotation of freshwater algae: a comparative study of differing shapes and sizes. Sep Sci Technol 50(7):1066–1072

    Article  CAS  Google Scholar 

  52. Teixeira MR, Sousa V, Rosa MJ (2010) Investigating dissolved air flotation performance with cyanobacterial cells and filaments. Water Res 44(11):3337–3344

    Article  CAS  PubMed  Google Scholar 

  53. Yoon R-H (1993) Microbubble flotation. Miner Eng 6(6):619–630

    Article  CAS  Google Scholar 

  54. Wu C, Li P, Xia S, Wang S, Wang Y, Hu J, Liu Z, Yu S (2019) The role of interface in microbubble ozonation of aromatic compounds. Chemosphere 220:1067–1074

    Article  CAS  PubMed  Google Scholar 

  55. Gurera D, Bhushan B (2020) Bioinspired movement of gas bubbles: composition, applications, generation, contact angle, and movement—an overview. Mol Syst Des Eng 5(10):1555–1577

    Article  CAS  Google Scholar 

  56. Zhang M, Qiu L, Liu G (2020) Basic characteristics and application of micro-nano bubbles in water treatment. IOP Conf Ser: Earth Environ Sci 510(4):042050

    Article  Google Scholar 

  57. Weber J, Agblevor F (2005) Microbubble fermentation of Trichoderma reesei for cellulase production. Process Biochem 40(2):669–676

    Article  CAS  Google Scholar 

  58. Liu S, Oshita S, Makino Y, Wang Q, Kawagoe Y, Uchida T (2016) Oxidative capacity of nanobubbles and its effect on seed germination. ACS Sustain Chem Eng 4(3):1347–1353

    Article  CAS  Google Scholar 

  59. Park J-S, Kurata K (2009) Application of microbubbles to hydroponics solution promotes lettuce growth. Horttechnology 19(1):212–215

    Article  Google Scholar 

  60. Tekile A, Kim I, Lee J-Y (2017) Applications of ozone micro-and nanobubble technologies in water and wastewater treatment. J Korean Soc Water Wastew 31(6):481–490

    Article  Google Scholar 

  61. Wang J, Li D (2018) Enhancing advanced oxidation process by microbubbles technology and the analysis of its degradation process. IOP Conf Ser: Earth Environ Sci 146(1):012048

    Google Scholar 

  62. Zheng T, Wang Q, Zhang T, Shi Z, Tian Y, Shi S, Smale N, Wang J (2015) Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry. J Hazard Mater 287:412–420

    Article  CAS  PubMed  Google Scholar 

  63. Chu L-B, Xing X-H, Yu A-F, Sun X-L, Jurcik B (2008) Enhanced treatment of practical textile wastewater by microbubble ozonation. Process Saf Environ 86(5):389–393

    Article  CAS  Google Scholar 

  64. Khuntia S, Majumder SK, Ghosh P (2015) Quantitative prediction of generation of hydroxyl radicals from ozone microbubbles. Chem Eng Res Des 98:231–239

    Article  CAS  Google Scholar 

  65. Tasaki T, Wada T, Baba Y, Kukizaki M (2009) Degradation of surfactants by an integrated nanobubbles/VUV irradiation technique. Ind Eng Chem Res 48(9):4237–4244

    Article  CAS  Google Scholar 

  66. Loeb BL, Thompson CM, Drago J, Takahara H, Baig S (2012) Worldwide ozone capacity for treatment of drinking water and wastewater: a review. Ozone Sci Eng 34(1):64–77

    Article  CAS  Google Scholar 

  67. Kobayashi F, Ikeura H, Ohsato S, Goto T, Tamaki M (2011) Disinfection using ozone microbubbles to inactivate Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum. Crop Prot 30(11):1514–1518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Fund of the Sahmyook University to Myoung-Hwan Park.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myoung-Hwan Park or Kibeom Kim.

Ethics declarations

Conflict of interest

Baljinder Singh, Nutan Shukla, Chan-Hyun Cho, Byung Sun Kim, Myoung-Hwan Park, and Kibeom Kim declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Shukla, N., Cho, CH. et al. Effect and application of micro- and nanobubbles in water purification. Toxicol. Environ. Health Sci. 13, 9–16 (2021). https://doi.org/10.1007/s13530-021-00081-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-021-00081-x

Keywords

Navigation